PRACTICES BUSINESS SECURITY ADVISOR.

Avoid Session Management
Security Pitfalls

Here’s where some current methods fall short, and what you can do to ensure
secure session management.

By Bill Jaeger, Contributing Writer

Can you improve
your session man-

agement security?

Yes!

Avoid basic authentication

You can enhance existing
methods

There are proven
cryptographic techniques
for generating session
identifiers

But...

Secure session
management is tricky
Development teams may
lack awareness

There are risks inherent in
the typical methods used

o you remember the old Atari video
D game "Pitfall"? Even if you don't, I'm

sure you'll commiserate with me
when 1 say I've felt like Pitfall Harry as I
swing through the e-business jungle, trying to
help customers avoid the known security dan-
gers and new surprises that have a way of
popping up on the Internet.

Secure session management—ensuring only
properly authenticated users can access your
e-business—is one such known danger that's
recently surprised a lot of people.

Why session management?

Before I get into the security aspects of ses-
sion management, let's talk a bit about how
the Web works, and why session management
is even necessary.

As you know, e-business applications are
quite different from traditional client-server
applications in many ways. One of the most sig-
nificant differences is that the Web is inherently
stateless, with each and every page, graphic, or
other request treated as a new, unique connec-
tion with no relationship to previous or future
connections. One user browsing one Web page
100 times looks no different than 100 unique
users browsing that same page. Compare that
to, say, a telnet session in which a connection is
established and remains established until
explicitly terminated.

The stateless Web is of little use to many
e-businesses, since features such as logins,
customization, and shopping carts all require

state. That is, one request has some depen-
dence upon another.

ExampLes: Checking out at an online store
first requires that something be placed into a
shopping cart. Or displaying a user's cus-
tomized portal interface requires the portal to
uniquely identify the user and recall previ-
ously set profile information.

To eliminate problems, companies apply the
client-server concept of a session to e-busi-
ness, using several means to simulate a state-
ful session atop a standard, non-stateful Web
request. Unfortunately, those simulation tech-
niques often aren't designed with an eye
toward security. They may leave your e-busi-
ness exposed and users open to fraudulent
use of their accounts.

REALITY CHECK: Interestingly, this problem
isn't the exclusive domain of small or non-
security conscious organizations. In late
September 2000, for example, it was discov-
ered that E*Trade’s session management
implementation was insecure, and that cus-
tomer accounts could be compromised.
Although E*Trade claimed there was no secu-
rity risk, just days after the vulnerability was
announced, they changed the way they gen-
erate sessions.

State mechanisms

There are a number of different ways to
simulate state in e-business applications. The
three most common methods are basic
authentication, URL embedding, and cookies.

Continued

Contributing Writer Bill Jaeger is director of applied research at METASeS, a full service provider of end-to-end
e-business security solutions and services, including the SecuritE-STAFF.com security knowledge management portal.

http://www.metases.com.

36 e-BUSINESS ADVISOR ¢ FEBRUARY 2001

Advisor.com



Avoid Session Management Security Pitfalls

Each of those methods basically does the same thing—they
let the Web browser client transmit additional, custom infor-
mation to the e-business server with each and every page,
graphic, form, or other request.

For basic authentication, this additional information is the
user's credentials (such as user ID and password); for URL
embedding and cookies, this additional information is typi-
cally known as a session ID. Tracking this additional infor-
mation on the server side, and associating it with user actions,
lets e-businesses simulate state.

Security is an issue if another user, whether malicious or
innocent, can guess (or intercept) the credential or session ID
information. Effectively providing that information to the
server lets one user access another user's session.

Let's take a look at each of these state mechanisms in more
detail, and consider their security ramifications.

Basic authentication

Virtually every Web browser and server builds in support
for basic authentication. When accessing a site that uses basic
authentication, the user is prompted to enter a user ID and
password that's valid for a specific security realm. Once
entered, these credentials are remembered by the Web
browser and provided to any Web server that exists within the
same security realm for each and every request.

Caution: Although extremely simple to implement, basic
authentication isn't secure. In particular, basic authentication
suffers from these major problems:

* The complete user ID and password is transmitted in
base64-encoded plain text with each and every request to a
given security realm as part of the HITP header. Because
these credentials are in plain text, it's trivial for a malicious
user to intercept the credentials when used over non-SSL
encrypted connections.

* Web servers and interim proxy servers can be configured to
log user credentials and other information provided as part
of the HTTP header. This means a user's full credentials may
be unknowingly sitting in a log file on an untrusted proxy or
Web server and subject to being revealed through server
misconfiguration, lack of discretion on the part of the server
owner, or through hacking. If intercepted, the user's creden-
tials can potentially be used to provide unfettered access to
the e-business.

BoTToM LINE: Basic authentication provides no mechanism
for the server to expire a user's session, placing the onus on
the user to shut down his Web browser or reboot his computer
to clear credentials from the Web browser.

To illustrate the potential dangers of basic authentication
and the damage that can be caused if a user's credentials are
intercepted, consider Morgan Stanley Dean Witter's
RetireView 401(k) management Web site, which uses basic
authentication to authenticate users based upon social secu-
rity and personal identification numbers. Other uses of social
security information aside, those same credentials are also
used for telephone account access.

Tip: It's best to avoid basic authentication as an authentica-
tion or session management mechanism due to its inherent
security risks.

38 e-BUSINESS ADVISOR « FEBRUARY 2001

Security is an issue if another user,
whether malicious or innocent, can
guess (or intercept) the credential
or session ID information.

Session IDs

Session IDs are an application-level construct whereby you
construct some sort of unique identifier and assign it to each
user to differentiate one from another. For sites that require
users to authenticate themselves using a mechanism other

~ than basic authentication (such as form-based login), the

session ID effectively becomes a surrogate for the user’s cre-

dentials for as long as the session ID is valid.

CAuTION: Generally speaking, session IDs have the potential
to provide a fairly secure means of enabling state. Unfor-
tunately, though, many session ID methods suffer from inse-
curities, including:

* Easily-guessed session IDs, such as sequentially increasing
integers. Malicious users can easily modify such session
identifiers in an attempt to find valid sessions. It may also be
trivial to use widely available or easily written programs to
conduct an exhaustive search to find valid session IDs.

* The small size of largely invariable session IDs that can be
easily guessed or brute forced by an exhaustive search.
Recent reports indicate that Charles Schwab's online invest-
ment service suffers from this problem.

¢ Trivially encoding user credentials within the session iden-
tifier. This is no better than basic authentication.

* Not having the server expire and no longer honoring the
session ID after some time period, such as no more than six
hours after login or 15 minutes of inactivity.

¢ Not having the server generate a new session ID for every
login, and instead permanently associating a session ID with
a user.

Session identifiers pose other security risks depending upon
whether they're embedded within URLs or implemented as
cookies.

URL embedding
URL embedding refers to placing a session ID within a

URL. Companies often do this to eliminate the need for cook-

ies, given public outcry and misunderstanding surrounding

their use.
CautioN: URL embedding, however, poses the following
security risks:

» When following links on a Web site, the URL of the refer-
ring location (for example, the URL containing the link that
was clicked on) is stored in the log files of Web and interim
proxy servers. If the URL contains the session identifier, it
will be included in the log files of those servers.

* Users frequently copy-and-paste URLs of interesting Web
pages and bookmark them, send them to friends, or post
them in online forums. In cases where users provide these
session ID-containing URLs to others, users may be

Advisor.com



Avoid Session Management Security Pitfalls

unknowingly giving full access to their accounts to
strangers or malicious users. I've seen this occur many times
in online forums where users have unwittingly exposed
their true identities, addresses, and credit card information.

Cookies
Storing session ID information in cookies also poses certain

security risks, largely due to implementation flaws in appli-

cation and Web server software. Risks include:

* Cookie contents are susceptible to being revealed to a mali-
cious user through well-known cross-site scripting Java-
Script vulnerabilities. This allows cookie contents to
potentially be retrieved under certain conditions through
HTML-enabled e-mail packages such as Outlook Express,
or through Web sites that allow users to submit and
subsequently display HTML. Charles Schwab's online
investment service, IBM, public message forums, several
Web mail providers, and many other Web sites are suscepti-
ble to this problem.

¢ Permanent, or disk-based, cookies can be easily retrieved
from public terminals, through poor system security, or
through operating system defects.

Tip: Memory-based cookies are arguably the most secure
means of storing session identifier information.

A better way

Often, development teams use poor session-management
techniques simply because they aren't aware of (or don't
understand) the security issues:

Follow this checklist of session management best practices:

1. Don't use long-term secrets such as user IDs and passwords
as session identifiers, even if encrypted. Instead, use strong,
random tokens that offer no value to other users or Web
sites.

2. Use proven cryptographic techniques for generating ses-
sion identifiers to ensure that they can't be easily guessed
or modified.
EXAMPLE: A recent posting by Alan DeKok to the BUG-
TRAQ mailing list suggested this formula for generating
session identifiers:
cookie = md5(secret + mdS(secret + expiration + user-IP
+ user-ID)) + expiry + user-ID
» md5 is the message digest 5 cryptographic hash
algorithm
¢ + denotes string concatenation
 secret is a frequently changed value known only to
the Web server(s)
e expiration is the timestamp when the session expires
¢ user-IP is the user's IP address
e user-ID is a unique user identifier.
See the sidebar for additional information on md5(), cryp-
tographic hashes, and the BUGTRAQ mailing list.
This formula effectively binds the cookie to one—and only
one—login session so the cookie is of no value to anyone but
the legitimate user. There are other, similar approaches you
can take to generate strong cookies, but this example
serves as a good illustration to show you what's possible and
what you should consider when generating secure session
identifiers.

40 €-BUSINESS ADVISOR « FEBRUARY 2001

To learn more

For information on cryptographic techniques, see:

RSA Laboratories' Frequently Asked Questions About Today's
Cryptography

http://www.rsasecurity.com/rsalabs/faq

Applied Cryptography,
by Bruce Schneier (John Wiley & Sons, 1995)

For information on cross-site scripting vulnerabilities, see:
CERT Advisory CA-2000-02

"Malicious HTML Tags Embedded in Client Web Requests”
http://www.cert.org/advisories/CA-2000-02.htmt

Apache Cross-Site Scripting Info
http://www.apache.org/info/css-security/index.html

Microsoft Information on Cross-Site Scripting
Security Vulnerability
http://www.microsoft.com/technet/security/crssite.asp

For information on the BUGTRAQ mailing list, see:
SecurityFocus
http://www.securityfocus.com

. Don't "invent” cryptographic or other obfuscation tech-

niques for hiding cookie information. It will be discovered.

. Expire all session identifiers after both a) an absolute time

(such as 6 hours); and b) after a period of inactivity (such
as 15 minutes). This greatly reduces the period of exposure
should someone compromise a user's session ID.

. Provide a logout function so users can voluntarily invali-
date their session identifier when they're through with
their session.

. Don't rely upon Web browser clients to expire or
invalidate cookie information; be sure to do this on the
server side.

. Validate session identifier information returned by the

client to ensure that it's still valid (for example, it hasn't
expired, it passes cryptographic checks, etc.). If the session
identifier is invalid, require the user to re-authenticate.

. Use memory-based, not disk-based, cookies for all secu-
rity-sensitive session information.

Crossing to safety

Secure session management can be tricky, with many traps
and pitfalls around every corner. A lack of security knowledge
and understanding of how the complex Web of technologies
can be exploited can easily leave your e-business exposed
to security compromise if appropriate safeguards aren't
implemented.

Despite the numerous security risks surrounding session
management, there are simple methods you can use to greatly
enhance session management security.

Ask YOURSELF: What dangers are lurking in your e-business
session management practices?

Advisor.com



